一、概述
1、Socket:之前的wordcount例子,已经演示过了,StreamingContext.socketTextStream()2、HDFS文件基于HDFS文件的实时计算,其实就是,监控一个HDFS目录,只要其中有新文件出现,就实时处理。相当于处理实时的文件流。streamingContext.fileStream(dataDirectory)streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass](dataDirectory)Spark Streaming会监视指定的HDFS目录,并且处理出现在目录中的文件。要注意的是,所有放入HDFS目录中的文件,都必须有相同的格式;必须使用移动或者重命名的方式,将文件移入目录;一旦处理之后,文件的内容即使改变,也不会再处理了;基于HDFS文件的数据源是没有Receiver的,因此不会占用一个cpu core。
二、代码实现
1、java实现
package cn.spark.study.streaming;import java.util.Arrays;import org.apache.spark.SparkConf;import org.apache.spark.api.java.function.FlatMapFunction;import org.apache.spark.api.java.function.Function2;import org.apache.spark.api.java.function.PairFunction;import org.apache.spark.streaming.Durations;import org.apache.spark.streaming.api.java.JavaDStream;import org.apache.spark.streaming.api.java.JavaPairDStream;import org.apache.spark.streaming.api.java.JavaStreamingContext;import scala.Tuple2;public class HDFSWordCount { public static void main(String[] args) { SparkConf conf = new SparkConf() .setMaster("local[2]") .setAppName("WordCount"); JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(3)); // 首先,使用JavaStreamingContext的textFileStream()方法,针对HDFS目录创建输入数据流 JavaDStreamlines = jssc.textFileStream("hdfs://spark1:9000/wordcount_dir"); // 执行wordcount操作 JavaDStream words = lines.flatMap(new FlatMapFunction () { private static final long serialVersionUID = 1L; @Override public Iterable call(String line) throws Exception { return Arrays.asList(line.split(" ")); } }); JavaPairDStream pairs = words.mapToPair(new PairFunction () { private static final long serialVersionUID = 1L; @Override public Tuple2 call(String word) throws Exception { return new Tuple2 (word, 1); } }); JavaPairDStream wordcounts = pairs.reduceByKey(new Function2 () { private static final long serialVersionUID = 1L; @Override public Integer call(Integer v1, Integer v2) throws Exception { return v1 + v2; } }); wordcounts.print(); jssc.start(); jssc.awaitTermination(); jssc.close(); }}###运行脚本[root@spark1 streaming]# cat hdfswordcount.sh /usr/local/spark-1.5.1-bin-hadoop2.4/bin/spark-submit \--class cn.spark.study.streaming.HDFSWordCount \--num-executors 3 \--driver-memory 100m \--executor-memory 100m \--executor-cores 3 \--files /usr/local/hive/conf/hive-site.xml \--driver-class-path /usr/local/hive/lib/mysql-connector-java-5.1.17.jar \/usr/local/spark-study/java/streaming/saprk-study-java-0.0.1-SNAPSHOT-jar-with-dependencies.jar \##此时打包上传,启动运行脚本,他就会一直监视hdfs的指定目录##把准备好的文件上传到hdfs,程序会马上读取到,并统计出来hdfs dfs -mkdir /wordcount_dirhdfs dfs -put t1.txt /wordcount_dir/t1.txt
2、scala实现
package cn.spark.study.streamingimport org.apache.spark.SparkConfimport org.apache.spark.streaming.StreamingContextimport org.apache.spark.streaming.Secondsobject HDFSWordCount { def main(args: Array[String]): Unit = { val conf = new SparkConf().setMaster("local[2]").setAppName("HDFSWordCount") val ssc = new StreamingContext(conf, Seconds(3)) val lines = ssc.textFileStream("hdfs://spark1:9000/wordcount_dir") val words = lines.flatMap(_.split(" ")) val pairs = words.map(word => (word, 1)) val wordCounts = pairs.reduceByKey(_ + _) wordCounts.print() ssc.start() ssc.awaitTermination() }}##运行脚本[root@spark1 streaming]# cat hdfswordcount.sh /usr/local/spark-1.5.1-bin-hadoop2.4/bin/spark-submit \--class cn.spark.study.streaming.HDFSWordCount \--num-executors 3 \--driver-memory 100m \--executor-memory 100m \--executor-cores 3 \--files /usr/local/hive/conf/hive-site.xml \--driver-class-path /usr/local/hive/lib/mysql-connector-java-5.1.17.jar \/usr/local/spark-study/scala/streaming/spark-study-scala.jar \##打包--上传,运行脚本##程序会监控着hdfs目录,此时上传一个新文件到hdfs,程序会马上读取到并统计出来hdfs dfs -put t2.txt /wordcount_dir/t2.txt